Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Healthcare (Basel) ; 10(8)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-2023353

ABSTRACT

The standard eruption of the permanent dentition in growing patients is influenced by multiple environmental factors. The objective of this research was to study the relationship between height and weight percentiles and the eruption of the permanent dentition. The design of the study was transversal based on the review of the clinical history, visual dental inspection, weight and height indicators, and their respective percentiles in patients in the mixed and definitive dentition stage. The descriptive and comparative analysis of the data was carried out with the statistical software R version 4.1.1. The sample size was 725 participants. The mean age of eruption of the first tooth was 8.0. The eruption sequence in the upper arch was first molar, central and lateral incisor, first premolar, canine, second premolar, and second molar. In the lower arch, the eruption sequence was: central incisor, first molar, lateral incisor, canine, first and second premolar, and second molar. The most frequent weight percentile was P50-97 (50.34%) and height P3-50 (53.38%). Weight (0.0129; 0.0426; 0.0495; 0.000166) and height (0.00768; 0.00473; 0.00927; 10-5) variables significantly influenced dental eruption. The factor that most influences the eruption of the permanent dentition is the height percentile.

3.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750505

ABSTRACT

With the help of novel processing workflows and algorithms, we have obtained a better understanding of the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state. We have re-analyzed previous cryo-EM data combining 3D clustering approaches with ways to explore a continuous flexibility space based on 3D Principal Component Analysis. These advanced analyses revealed a concerted motion involving the receptor-binding domain (RBD), N-terminal domain (NTD), and subdomain 1 and 2 (SD1 & SD2) around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. We show that in this dataset there are not well-defined, stable, spike conformations, but virtually a continuum of states moving in a concerted fashion. We obtained an improved resolution ensemble map with minimum bias, from which we model by flexible fitting the extremes of the change along the direction of maximal variance. Moreover, a high-resolution structure of a recently described biochemically stabilized form of the spike is shown to greatly reduce the dynamics observed for the wild-type spike. Our results provide new detailed avenues to potentially restrain the spike dynamics for structure-based drug and vaccine design and at the same time give a warning of the potential image processing classification instability of these complicated datasets, having a direct impact on the interpretability of the results.

4.
J Water Health ; 19(5): 775-784, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1477682

ABSTRACT

The detection of SARS-CoV in wastewater has been proposed as a tool for monitoring COVID-19 at the community level. Although many reports have been published about detecting viral RNA in wastewater and its presence has been linked to infected people, appropriate analytical methodologies to use this approach have not yet been established. In this study, we compared ultrafiltration, polyethylene glycol precipitation, flocculation using AlCl3, and flocculation with skim milk for the recovery of SARS-CoV-2, using RNA from patients with positive diagnoses for COVID-19 and Pseudomonas phage φ6 as the control. We also evaluated the primers for detecting the E, RdRp, and N genes of the virus, as well as different storage times. Differences in the recovery efficiencies were evident with the different concentration methods, the best being ultrafiltration and precipitation with aluminum, which had recovery rates of 42.0% and 30.0%, respectively, when virus was present at high levels. Significant differences were found between the recoveries using wastewater and deionized water and between different storage times, with better recoveries for 6 and 12 h samplings. The E gene was the only one detected in all the samples analyzed. The results show that although this approach can provide important data for studying the pandemic, clear protocols are necessary for investigations to be comparable.


Subject(s)
COVID-19 , Viruses , Humans , Pandemics , SARS-CoV-2 , Wastewater
5.
Influenza Other Respir Viruses ; 16(1): 166-171, 2022 01.
Article in English | MEDLINE | ID: covidwho-1413126

ABSTRACT

On 9 March 2020, the World Health Organization (WHO) Global Influenza Programme (GIP) asked participant sites on the Global Influenza Hospital Surveillance Network (GIHSN) to contribute to data collection concerning severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We re-analysed 5833 viral RNA archived samples collected prospectively from hospital admissions for influenza-like illness (ILI) in the Valencia Region of Spain by the Valencia Hospital Surveillance Network for the Study of Influenza and Other Respiratory Viruses (VAHNSI) network (four hospitals, catchment area population 1 118 732) during the pre-pandemic 2018/2019 (n = 4010) and pandemic 2019/2020 (n = 1823) influenza seasons for the presence of SARS-CoV-2. We did not find evidence for community-acquired SARS-CoV-2 infection in hospital admissions for ILI in our region before early March 2020.


Subject(s)
COVID-19 , Influenza, Human , Hospitalization , Humans , Influenza, Human/epidemiology , Retrospective Studies , SARS-CoV-2 , Seasons , Spain/epidemiology
6.
Genome Biol Evol ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1370777

ABSTRACT

Owing to a lag between a deleterious mutation's appearance and its selective removal, gold-standard methods for mutation rate estimation assume no meaningful loss of mutations between parents and offspring. Indeed, from analysis of closely related lineages, in SARS-CoV-2, the Ka/Ks ratio was previously estimated as 1.008, suggesting no within-host selection. By contrast, we find a higher number of observed SNPs at 4-fold degenerate sites than elsewhere and, allowing for the virus's complex mutational and compositional biases, estimate that the mutation rate is at least 49-67% higher than would be estimated based on the rate of appearance of variants in sampled genomes. Given the high Ka/Ks one might assume that the majority of such intrahost selection is the purging of nonsense mutations. However, we estimate that selection against nonsense mutations accounts for only ∼10% of all the "missing" mutations. Instead, classical protein-level selective filters (against chemically disparate amino acids and those predicted to disrupt protein functionality) account for many missing mutations. It is less obvious why for an intracellular parasite, amino acid cost parameters, notably amino acid decay rate, is also significant. Perhaps most surprisingly, we also find evidence for real-time selection against synonymous mutations that move codon usage away from that of humans. We conclude that there is common intrahost selection on SARS-CoV-2 that acts on nonsense, missense, and possibly synonymous mutations. This has implications for methods of mutation rate estimation, for determining times to common ancestry and the potential for intrahost evolution including vaccine escape.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Codon Usage , Codon, Nonsense , Evolution, Molecular , Humans , Models, Genetic , Mutation Rate , Mutation, Missense , Polymorphism, Single Nucleotide , Selection, Genetic , Silent Mutation
7.
Mol Biol Evol ; 38(1): 67-83, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1010384

ABSTRACT

Large-scale re-engineering of synonymous sites is a promising strategy to generate vaccines either through synthesis of attenuated viruses or via codon-optimized genes in DNA vaccines. Attenuation typically relies on deoptimization of codon pairs and maximization of CpG dinucleotide frequencies. So as to formulate evolutionarily informed attenuation strategies that aim to force nucleotide usage against the direction favored by selection, here, we examine available whole-genome sequences of SARS-CoV-2 to infer patterns of mutation and selection on synonymous sites. Analysis of mutational profiles indicates a strong mutation bias toward U. In turn, analysis of observed synonymous site composition implicates selection against U. Accounting for dinucleotide effects reinforces this conclusion, observed UU content being a quarter of that expected under neutrality. Possible mechanisms of selection against U mutations include selection for higher expression, for high mRNA stability or lower immunogenicity of viral genes. Consistent with gene-specific selection against CpG dinucleotides, we observe systematic differences of CpG content between SARS-CoV-2 genes. We propose an evolutionarily informed approach to attenuation that, unusually, seeks to increase usage of the already most common synonymous codons. Comparable analysis of H1N1 and Ebola finds that GC3 deviated from neutral equilibrium is not a universal feature, cautioning against generalization of results.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19/genetics , Genome, Viral , Mutation , SARS-CoV-2/genetics , Selection, Genetic , COVID-19/prevention & control , Humans , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Uracil
8.
IUCrJ ; 7(Pt 6)2020 Sep 29.
Article in English | MEDLINE | ID: covidwho-975415

ABSTRACT

Using a new consensus-based image-processing approach together with principal component analysis, the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state have been analysed. These studies revealed concerted motions involving the receptor-binding domain (RBD), N-terminal domain, and subdomains 1 and 2 around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. It is shown that in this data set there are not well defined, stable spike conformations, but virtually a continuum of states. An ensemble map was obtained with minimum bias, from which the extremes of the change along the direction of maximal variance were modeled by flexible fitting. The results provide a warning of the potential image-processing classification instability of these complicated data sets, which has a direct impact on the interpretability of the results.

9.
bioRxiv ; 2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-664708

ABSTRACT

With the help of novel processing workflows and algorithms, we have obtained a better understanding of the flexibility and conformational dynamics of the SARS-CoV-2 spike in the prefusion state. We have re-analyzed previous cryo-EM data combining 3D clustering approaches with ways to explore a continuous flexibility space based on 3D Principal Component Analysis. These advanced analyses revealed a concerted motion involving the receptor-binding domain (RBD), N-terminal domain (NTD), and subdomain 1 and 2 (SD1 & SD2) around the previously characterized 1-RBD-up state, which have been modeled as elastic deformations. We show that in this dataset there are not well-defined, stable, spike conformations, but virtually a continuum of states moving in a concerted fashion. We obtained an improved resolution ensemble map with minimum bias, from which we model by flexible fitting the extremes of the change along the direction of maximal variance. Moreover, a high-resolution structure of a recently described biochemically stabilized form of the spike is shown to greatly reduce the dynamics observed for the wild-type spike. Our results provide new detailed avenues to potentially restrain the spike dynamics for structure-based drug and vaccine design and at the same time give a warning of the potential image processing classification instability of these complicated datasets, having a direct impact on the interpretability of the results.

SELECTION OF CITATIONS
SEARCH DETAIL